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Pumping or drag reduction?
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Two types of wall actuation in channel flow are considered: travelling waves of
wall deformation (peristalsis) and travelling waves of blowing and suction. The flow
response and its mechanisms are analysed using nonlinear and weakly nonlinear
computations. We show that both actuations induce a flux in the channel in the
absence of an imposed pressure gradient and can thus be characterized as pumping.
In the context of flow control, pumping and drag reduction are strongly connected,
and we seek to define them properly based on these two actuation examples. Movies
showing the flow motion for the two types of actuation are available with the online
version of this paper (journals.cambridge.org/FLM).

1. Introduction
Aero- and hydrodynamic drag are the main resistances to vehicle motion: airplanes,

ships, trains, cars, bicycles . . . and are thus responsible for a large part of the spent
power. This drag usually consists of pressure drag, for instance dramatically increased
by flow recirculation, and skin friction drag, dramatically increased by transition to
turbulence. Higher speed for lower power can be obtained when the vehicle is designed
such as to take advantages of the flow dynamics. Skin friction drag reduction has
received much attention: prevention of the transition to turbulence by stabilization
of the boundary layer (see, e.g. Joslin 1998; Kim & Bewley 2007) or reduction of the
skin friction in the turbulent regime (e.g. Choi, Moin & Kim 1994; Kasagi, Suzuki &
Fukagata 2009). The plane channel flow is a simple configuration exhibiting the central
elements of skin friction drag (exponential and algebraic instabilities, transition to
turbulence, sustained turbulent regime) and was thus used as a test case and a source
of inspiration for research in this field.

In view of flow control for drag reduction, it is useful to search for fundamental
performance limitations. In Bewley (2001), the following conjecture was proposed
(Bewley’s conjecture): ‘The lowest sustainable drag of an incompressible constant
mass flux channel flow, when controlled via a distribution of zero-net mass-flux
blowing/suction over the no-slip channel walls, is exactly that of the laminar flow’.
A momentum balance in the channel shows that the work of the shear at the walls –
acting against the flow – is directly balanced by the work of the pressure at inflow
and outflow. As emphasized by Marusic, Joseph & Mahesh (2007), the formulation of
the conjecture where the flux is fixed and the pressure gradient is allowed to change,
is equivalent to a formulation where the pressure gradient is fixed and the flux is
allowed to change. In this case of a fixed pressure gradient, the conjecture tells that
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the actuation cannot induce a flux in excess of the laminar value. In other words
whatever the actuation power, the flux cannot be increased.

In Min et al. (2006), a blowing and suction boundary condition was applied at the
channel walls in the form of a travelling wave in numerical simulations of laminar and
turbulent flows; the flux was kept constant by adjusting the pressure gradient for the
different actuation parameters: amplitude, wave speed and wavelength. They show
that when the wave is made to travel upstream, the fixed flux can be maintained with
a lesser pressure gradient than the laminar value, thus achieving sustained sublaminar
drag. Their setting complies with the requirement of the conjecture above: constant
mass flux, no-slip walls, zero-net mass-flux actuation and sustained drag effect. They
thus provide a counter example to Bewley’s conjecture.

This result has attracted the attention of Luchini (2006), where a link is drawn
between the unexpected sublaminar drag and acoustic streaming. Streaming consists
in the generation of a mean drift by an oscillating flow (see Lighthill 1978 for an
inspiring lecture and Riley 2001 for a recent review). In his paper, Luchini comes
to state ‘not drag but thrust’, commenting indeed that ‘the effect of a zero-mean
blowing-and-suction at the wall is not a (multiplicative) influence on the drag-
producing mechanism driven by the pressure gradient, but an (additive) pumping
that pushes the fluid in one direction or the other independent of any mean pressure
gradient applied’. According to Luchini, a travelling wave of blowing and suction at
the wall is not drag reduction, it is pumping. Luchini has numerically validated this
interpretation by showing in his paper that a consistent flow rate could be sustained
while turning off the pressure gradient.

We can now turn to the purpose of the present paper. A wide range of phenomena
can be categorized as to belonging to the family of streaming, without need of precise
considerations on the chain of events leading to the mean drift. We will see through our
analysis that subtle effects are at play in the response to the travelling wave actuation.
Min et al. (2006) close their paper with ‘the current control scheme, consisting of
surface blowing and suction in the form of travelling waves, is mathematically simple
[. . . ], yet it may not be straightforward to implement in real flows. [. . . ]. However,
a moving surface with wavy motion would produce a similar effect, since wavy walls
with small amplitudes can be approximated by surface blowing and suction’. On the
contrary, we will see that the responses to the two types of actuation – travelling wave
of blowing and suction and travelling wave of wall deformation – are very different.

In figure 1 we have represented the velocity fields of the response to the two
travelling wave actuations in a plane channel. In both cases, the wave is travelling
from left to right. A first intriguing observation is that for the travelling wave of wall
deformation, a mean flux is generated to the right – that is, in the same direction as
the wave – whereas for the travelling wave of blowing and suction, a mean flux is
induced to the left – that is, opposite to the direction of the wave. We will analyse
this phenomenon, and distinguish the mechanisms at play.

2. The physics of the travelling wave actuations
2.1. Travelling wave of wall deformation

The walls of our channel can now be deformed in the shape of a travelling wave with
phase speed c. We can consider the case of sinusoidal waves about the wall original
position, or choose a different waveform to emphasize the mechanisms at play. In
this first analysis, we consider a channel without imposed mean pressure gradient, i.e.
no Poiseuille profile. Impact of the mean pressure gradient will be estimated in the
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Figure 1. Velocity and pressure fields in the peristalsis and blowing/suction cases, the
Reynolds number is 300, wave amplitude is φ = 0.5, and the wavelength is L =6. The pressure
field is indicated by grey shading: lowest pressure is black. The flow motion is best viewed from
the movies available with the online version of this paper (journals.cambridge.org/FLM).

appendix. The system quantities are made dimensionless with respect to the channel
half height h, fluid density ρ, viscosity μ and wave speed c. The Reynolds number
relevant for this analysis is then defined as Rew = ρch/μ. We parametrize the wall
wave amplitude with φ, the maximum displacement of the walls from y = ±1. That is,
φ = 0 means a straight channel and φ = 1 implies a deformation such that the channel
is occluded. Hereafter, the direction of the wave propagation and its opposite will be
termed, respectively, the forward and the backward directions. Note that particles at
the wall only move in the vertical direction, while the wave of deformation propagates
in the horizontal direction, that is, no forward motion is imposed at the wall.

When travelling in the frame of the wave, the flow has steady boundary conditions
and a fixed domain. It can thus be computed as a stationary solution of the Navier–
Stokes equations in the domain deformed with the waveform. The Navier–Stokes
equations are discretized in space using the fourth-order finite differences, with no-
slip boundary conditions at the displaced walls and periodicity in the horizontal
direction. The steady-state flow is computed using the Newton method.

The pumping mechanism has a viscous origin. Propagation of the deformation
induces a flow from regions being constricted to regions being expanded. Without
viscosity, this flow would be equally distributed to the forward and backward
directions: no pumping. The backward flow takes place in a constricted channel,
whereas the forward flow takes place in an expanded channel. For a viscous fluid,
the larger friction in the constricted region induces an asymmetry in favour to the
forward flow, thus a mean flux in the direction of the propagation of the wave:
this is the pumping mechanism. The flux will be small when the wall deformation is
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Figure 2. Configuration of peristaltic pumping model (2.6). (a) Velocity profiles for
φ = 0.5, wavelength L = 30 and Rew = 1 (black) and Rew =1000 (light grey). For
Rew = 0.1, 1, 10, 100, 1000, (b) pressure along one wavelength, normalized to the amplitude
range [−1, 1].

small, and reach a maximum when the channel is occluded, at φ = 1. In this limit, the
trapped flow is forced forward at the speed of the wave; the flux is unity.

For low Reynolds numbers, long wavelength and sinusoidal wall deformation,
a closed-form expression for the flux can be derived from the Stokes equation:
Qsin = 3φ2/(2 + φ2) (Jaffrin & Shapiro 1971). For the purpose of illustrating the
mechanism at play, we wish to derive an equivalent expression directly from the
above description of the mechanism. A good qualitative match with the computed
data will thus be a confirmation of the understanding of the mechanism. With this
aim, we take the freedom to change the flow geometry so that the key effects clearly
appear. The pumping results from different head losses in the forward and backward
flows. A waveform which emphasizes this mechanism consists of short constrictions
and expansions that connect long sections of straight channel, as shown in figure 2.
The wave of wall deformation propagates from left to right, thus, region 1 is a zone
where the channel is being constricted, whereas region 2 is a zone where the channel
is being expanded. This effect is clearly visible in the movies. The pressure at the
constriction region 1 and expansion region 2 are denoted by P1 and P2. There is no
externally imposed mean pressure gradient, thus the pressure P ′

1 in the region 1′ is
equal to P1.

The flow motion originates from the displacement of the wall deformation.
Conservation of mass in a fixed control volume enclosing region 2 being expanded
accounts for this effect: the ingoing flux F1 on the left of region 2 plus the ingoing
flux −F2 on the right equals the rate of increase of volume of the region. This change
of volume is 2φ, because of an height expansion of 2φ at unit speed. This gives

F1 − F2 = 2φ. (2.1)

To obtain a second relation for F1 and F2 we impose that the total pressure rise
must be zero over one wavelength; this condition imposes that the skin friction in the
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constricted channel be equal in amplitude and opposite in sign to the skin friction in
the expanded channel

∂u1

∂y
|wall +

∂u2

∂y
|wall = 0. (2.2)

We assume Poiseuille profiles in both channel sections

u1 = U1[1 − y2/(1 + φ)2], u2 = U2[1 − y2/(1 − φ)2],

where we have accounted for the different half height 1+φ and 1−φ in the expanded
and constricted channels. From these expression, we can obtain the expression of the
skin friction in each channel, which with (2.2) leads to

(1 − φ)2U1 + (1 + φ)2U2 = 0. (2.3)

The flux is the integral of the velocity profile over the channel

F1 = 2U1(1 + φ)/3, F2 = 2U2(1 − φ)/3. (2.4)

The total flux of the pumping is

Q =
1

L

∫ L

x=0

F (x) dx =
1

L

(
L

2
F1 +

L

2
F2

)
= (F1 + F2)/2, (2.5)

where L is the wavelength. Combining (2.1), (2.3), (2.4) and (2.5), we finally obtain
the expression for Q as a function of φ

Q = φ
(1 + φ)3 − (1 − φ)3

(1 + φ)3 + (1 − φ)3
. (2.6)

It vanishes for straight channel (φ = 0), grows quadratically at low φ, and tends to
unity for occlusion (φ = 1). The computed velocity profiles are shown in figure 2.
The computed flux is compared to that obtained from (2.6), which shows excellent
agreement. The pressure along the channel centreline is also represented for several
Reynolds numbers.

It is remarkable that the flux does not depend on the Reynolds number. Viscosity
is essential for this pumping mechanism: the competition of viscous resistance in the
constricted and expanded channels. But this competition appears as a ratio of the
contribution of each section, thus the Reynolds number disappears. We will see in § 4
on the other hand that the energy spent does depend on the Reynolds number.

The details of the flow about the constriction and expansion regions have little
effect at long wavelengths, thus their exact shape is immaterial to the pumping. At
low Reynolds numbers, the centreline pressure has a typical Poiseuille shape, with
a constant slope opposed to the flow direction. For larger Reynolds numbers, large
pressure gradients are concentrated in the short regions of flow acceleration and
deceleration, which is a typical inviscid limit behaviour.

In figure 3, we have represented the trajectories of five particles during six periods
of the travelling waves. Flow particles follow a circular motion with a mean drift to
the right.

2.2. Travelling wave of blowing and suction

We now let the channel walls rest at y = ±1, but blowing and suction is imposed as
the boundary condition on the vertical velocity. For the horizontal velocity, no-slip
condition applies. Once again, the flow is steady in the frame travelling with the wave,
and can be computed with the same tools as for § 2.1 using finite differences and the
Newton method.
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Figure 3. Trajectories of five particles at Rew =100, L = 10 for six periods. Stars locate the
particles’ initial position. The motion of flow particles is shown in the movies available with
the online version of this paper.
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Figure 4. Travelling wave of blowing and suction. (a) Instantaneous streamlines and averaged
streamwise profile in the upper half of the channel for φ = 1 at Reynolds corresponding to the
black dots of (b). (b) Mean flux normalized by |Q0| as a function of the Reynolds number for
five different φ values.

Instantaneous streamlines in the frame at rest are shown in figure 4(a) while
increasing the Reynolds number; the upper half of the channel is represented. At
low Reynolds numbers, the flow is structured in two cells of equal length, each
one corresponding to the inflow/outflow of fluid particles at the walls due to the
boundary condition. One cell corresponds to particles flowing forward, the other cell
corresponds to particles flowing backward. When the Reynolds number is raised –
which can be thought as progressively increasing the wave speed – the forward cell
shrinks to the advantage of the backward cell.

Changes in the relative sizes of the forward and backward cells are a kinematic
consequence of the dynamic effects at play in the pumping mechanism. The total flux
Q is the average over one wavelength of the local flux F (x)

Q =
1

L

∫ x=L

x=0

F (x) dx. (2.7)
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Since the flux between two streamlines is a constant, the streamline pattern connects
the flux in the domain to the flux at the boundaries, which is imposed and known.
Equal lengths of the two cells imply that half of the flux injected at the wall is directed
forward and half of the flux injected at the wall is directed backward: zero pumping.
When on the other hand, the forward cell shrinks, more of the flow injected at the
walls is gathered to the backward direction: negative pumping.

For large Reynolds number, the forward cell vanishes. At the Reynolds number
where the forward cell just disappears, assuming that all streamlines start or end at
the walls, the total flux can be quantified as

Q0 =
1

L

∫ L

x=0

∫ x

ξ=0

−η(ξ ) dξ

︸ ︷︷ ︸
F (ξ )

dx =
1

L

∫ L

0

xη(x) dx,

where η is the waveform. For a sinusoidal η, the integration gives Q0 = − φL/2π.
This result is a gross evaluation of the maximum flux; it conveys the physics of
the structuring of the streamline pattern into two cells and the disappearing of the
forward cell.

The mean flux computed while varying the wave amplitude and the Reynolds
number is shown in figure 4(b), normalized by Q0. The flux is negative (backward),
and increases in amplitude with Reynolds number until reaching a constant value.
We observe that the maximum flux is larger than Q0; indeed, streamlines that are
not connected to the wall inflow/outflow are present. These correspond to particles
in the centre region, entrained by the near-wall flow motion.

It remains now to penetrate the dynamic processes at play. To this end, it is helpful
to switch to a Lagrangian flow description. For a stationary wave (c =0), particles
follow trajectories from inflow regions to outflow regions. In this cell structure,
up/down and forward/backward displacements are synchronized into a convection
structure, as seen in figure 4(a). Here, since the wave speed is zero, trajectories are
superposed on the streamlines; all particles emanate from the wall and are eventually
sucked back.

When the wave is set to travel, the streamline convection structure is maintained.
Some particles still enter and exit through the walls, but there will also be particles
that remain in the channel. They are advected up and down as suction and blowing
zones travel nearby at the wall, and they are also advected forward and backward
in a synchronized manner. The motion can be imagined by translating rightward
the streamline patterns of figure 4, letting the particles velocity be tangent to the
instantaneous streamlines. Let us now follow one such particle, initially at distance
y0 from the wall. It is convected close to the wall and back to y0 through the forward
part of its motion, then away from the wall and back to y0 in the backward part of
its motion. In the absence of fluid viscosity, this sequence would form a closed loop:
after one period, the particle returns to its initial position. For a viscous fluid on
the other hand, particle motion being hindered close to the wall due to the no-slip
condition, an asymmetry results in favour of the backward motion: after one period
of the travelling wave, our particle returns to y0 but has moved a finite distance in
the backward direction. The synchronization of vertical and horizontal displacements
is best viewed in the movies available with the online version of this paper.

Particle trajectories in the frame at rest are shown in figure 5 for three wave
amplitudes. For the lowest amplitude, the circular trajectories have small radius. A
zoom shows a slight backward drift. For the larger wave amplitudes, the particles
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Figure 5. Trajectories of five particles at Rew = 100, L =10 for six periods, with three wave
amplitudes φ = 0.01, 0.05, 0.1. Stars locate the particles’ initial position. The motion of flow
particles is shown in the movies available with the online version of this paper.

show clearly the trend described above, with a damped forward motion, leading to a
rapid drift.

Variation of the Reynolds number introduces an additional phenomenon. For low
Reynolds numbers, slow-down of particles due to the no-slip walls influences the
complete domain, thus both forward and backward motions are affected though
with slightly different magnitude: low pumping. At large Reynolds numbers, bulk
inertia of particles in the centre of the channel dominates and the no-slip boundary
condition is felt only in a thin viscous layer close to the wall. The particles that will
contribute most to the pumping are those that oscillate about the edge of this viscous
layer: flowing freely when outside (backward), and nearly stopped when penetrating
(forward).

2.3. Pumping efficiency

We will now consider the spent power for peristalsis and blowing and suction. The
energy budget is composed on one hand of viscous dissipation, and on the other
hand, of the work of the actuation. At steady state, the total energy is constant in
time. For blowing and suction, energy is injected through the work of the pressure at
the wall

Blowing and suction: Wact = −v(p + v2/2)|y=1

energy is transferred from the actuation to the fluid if the top wall pressure has its
sign opposite to the sign of the velocity v. Note that here, as for the definition of the
flux, we consider only the top half of the channel. For peristalsis, wall deformation
induces a contribution of viscous forces

Peristalsis: Wact = −vn(p + EK )|wall +
1

Rew

∂EK

∂n
|wall,

where vn is the velocity normal to the wall, and ∂EK/∂n is the normal derivative of
the kinetic energy, with EK = (u2 + v2)/2. In this expression, the overline · denotes
average along the top wall. For more details on these expressions, see for instance
Mito & Kasagi (1998). If an external pressure gradient Px is present, there is an other
source for energy

Pressure gradient: Wpg = − 1

L

∫
xy

uPx dx dy = −QPx.

Energy is injected to the flow if P decreases in the direction of the flux.
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We now seek to define a pumping efficiency. Let us suppose that a given flow
actuation induces a flux Q in absence of an external pressure gradient. This actuation
can be said efficient if the needed energy is close to the energy needed to drive
the same flux with only an external pressure gradient (laminar Poiseuille flow). The
pressure gradient needed to drive a Poiseuille flow of flux Q is P ref

x = − 3Q/Rew , thus
the reference power is

Reference: Wref = −QP ref
x = 3Q2/Rew.

The efficiency can then be defined as the reference power divided by the total injected
power; this leads to

Efficiency =
Wref

Wact + Wpg

=
3Q2

Rew

1

Wact + Wpg

.

Note that this efficiency must be unity whenever Wact =0. In figure 6, we show how
the efficiency depends on the Reynolds number and actuation amplitude φ. Here,
Wpg =0.

We observe that the efficiency is always less than one, namely, it always costs
more energy to drive a given flux with the travelling wave actuation than with a
pressure gradient. The most notable information here is that for blowing and suction,
efficiency increases with Rew , whereas for peristalsis, efficiency is best at lowest
Reynolds number. For the computations presented here, the overall best efficiency is
found for peristalsis: about 0.73 at lowest Reynolds number (Rew = 1) and at highest
actuation amplitude (φ =0.8).

3. Flow control
The drag reduction problem was formulated in Bewley (2001) as finding the lowest

power for a given flux Q in the channel. It was conjectured that whatever the actuation
power Wact, it is impossible to use a pressure gradient power less than the laminar
value 3Q2/Re; Min et al. (2006) gave a counter example.

Clearly, the actuation power must be accounted for when searching for a
performance limitation in flow control. In Fukagata, Sugiyama & Kasagi (2009),
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a lower bound is demonstrated for the power spent by the work of the pressure
gradient plus the power spent by the actuation. This total power injected into
the flow must balance the only cause of damping: viscous dissipation in the flow
domain (see also Bewley in press). The flow motion which for a given set of boundary
conditions experiences the least viscous damping is that satisfying the Stokes equation.
It is interesting that precisely the flow where viscosity dominates is the one which
dissipates least. The channel is a parallel geometry such that inertial effects do not
affect its steady state in the laminar regime; the parabolic profile is solution to the
Stokes equation, it is therefore the ideal drag reduction target.

We have represented in figure 7 the different zones of interest. This is the ‘power
plane’. At zero actuation power, there are two possible sustained regimes: laminar
(square) or turbulent (circle). Powers are normalized with that needed to drive the
laminar Poiseuille flow. Here, the power required to drive the turbulent flow is
slightly more than twice that of the laminar case. This corresponds to the turbulent
simulations in Min et al. (2006) at Reynolds number 2000. The oblique paths in this
graph correspond to constant total driving power. Two regions are highlighted: the
shaded strip is the domain forbidden by Bewley’s conjecture: whatever the actuation
energy, one cannot drive a given flux with less pressure power than that of the laminar
flow. The dark triangle is the domain forbidden by Fukagata et al. (2009): one cannot
drive a given flux with less total power than that of the laminar flow.

Presented as here, figure 7 emphasizes for the pressure power, in the spirit of
Bewley’s conjecture. Now that it is clear that the total power must be considered, it is
more relevant to orient the axis such that horizontal lines correspond to total power.
We have performed this change in figure 8. Here the axes of the previous figure are
rotated 45◦ and scaled accordingly. We have, here again, highlighted the forbidden
zone where the power is less than laminar.

We would like now to place the travelling wave actuation in this diagram. In this
section, we are interested in large Reynolds numbers, that is, in a parameter range
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where the peristaltic pumping is inefficient. We thus only consider the travelling wave
of blowing and suction. We are now interested in the case of a fixed flux Q =2/3.
This flux corresponds to a centreline velocity Uc = 1, thus here Rew = Rec = 2000. We
keep a wavelength of L =2π with a wave speed of unity c = ±1. We vary the wave
amplitude and adjust the pressure gradient accordingly in order to maintain Q =2/3.
We can then compute the pressure and actuation power, and report it on the diagram.
The results are shown in figure 8.

We observe as expected that the total power is always larger than that of the laminar
Poiseuille. We have also considered the case of negative pressure power, that is when
the actuation power is too large, and must be compensated by an adverse pressure
gradient to maintain the desired flux. The case where actuation power is negative has
also been considered: the wave is made to travel downstream and pumps against the
flux, which is compensated with a large pressure power in favour of downstream flux.

We now examine the case of the travelling waves in Min et al. (2006) for the
turbulent regime. The pressure gradient and actuation powers for waves of amplitudes
0.1 and 0.25 are shown by the two stars of figure 8. The mechanism at play in this
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turbulent case is of great interest. Indeed, the total power is reduced as compared
to the turbulent flow without actuation. We have in the preceding sections analysed
the physics of the pumping effect in the laminar case, and care must be taken when
extrapolating our observation to a regime of a great complexity. We can nevertheless
state a safe comment: there is drag reduction in the turbulent regime; power is not
simply transferred from pressure gradient pumping to actuation pumping. To explain
this effect, Luchini (2006) suggests that suction regions absorb turbulent flow whereas
blowing regions inject laminar flow, resulting in a global decrease of the turbulence
intensity, wall normal mixing and thus drag. A turbulent channel with constant
suction at one wall and constant blowing at the other wall should have this effect.
This test was performed in Fukagata, Iwamoto & Kasagi (2002), but in fact it results
in an increased drag, thus discarding this mechanism as a potential explanation of
Min’s results.

We can now build on the observations of the present paper to suggest a mechanism
that interestingly links drag reduction to pumping. It is here a temptative mechanism,
which we only could assess if supported by critical scrutiny of turbulent flow data. At
first, the upstream travelling wave of wall actuation induces a flux in the downstream
direction. In the context of a channel with constant flux, this effect results in a lower
pressure gradient: this is the pumping effect. Fukagata et al. (2002) have analysed the
drag reduction effects in turbulent channels, and have shown the central role played
by the Reynolds stress. They show that the pressure gradient is proportional to the
spatial average of yu′v′ – that is, the Reynolds shear stress weighted with the distance
from the centreline. Naturally, the decrease of the Reynolds shear stress due to the
lowered pressure gradient in turn leads to a decrease of the turbulence production. At
last, there is a decrease of turbulent mixing caused by the decrease of the turbulent
production: this is the drag reduction effect.

4. Conclusion
Travelling waves of wall deformation induce pumping in the forward direction.

On the other hand, travelling waves of blowing and suction induce pumping in the
backward direction. In both cases, fluid particles are entrained into a circular motion
by the wall actuation; in both cases the pumping direction originates from a different
viscous damping during the backward and forward motion of fluid particles along
its circular trajectory. For peristalsis, the particles’ backward motion takes place in
the constricted section of the channel, where viscosity slows down the flow. For
blowing and suction, the particles’ forward motion takes place close to the walls,
where viscosity slows down the flow.

A weakly nonlinear analysis, as done in the appendix, provides a different point
of view. The leading-order solution in both cases is a zero mean motion of the
same order of amplitude as the wall actuation. The Reynolds shear stress generated
by this leading-order solution acts as a forcing to the second-order solution, being
balanced by viscous forces. This induces a creeping flow with a net flux, from which
a backward pumping originates, as observed for the blowing and suction case. For
peristalsis an additional effect is present: a non-zero boundary condition on the
second-order solution due to quadratic interaction of the leading-order solution and
the wall deformation. This additional effect acts opposite to the Reynolds stress effect,
inducing forward pumping.

The question of flow control in the channel can be formulated in two equivalent
ways: for a given flux, how can we reduce the required amount of energy? or
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equivalently for a given amount of energy, how can we increase the flux? The first
formulation is usually preferred since it is common to define the Reynolds number
based on the laminar centreline velocity or bulk-mean velocity. The two equivalent
formulations for the motion of a vehicle are: for a given speed, how can we reduce
the driving power? or, for a given driving power, how can we increase the reachable
speed? As emphasized in Bewley & Aamo (2004), the performance should be reached,
but also sustained.

It is usual to drive a flux in a channel by imposing an external pressure gradient,
for instance with a differential inlet/outlet pressure or a body force. One can also
induce a flux using a localized pump, for instance a powered propeller inserted in the
channel. The flux will be hindered by viscous effects until a balance is found between
the skin friction and the power injected through the propeller. Of course, one would
not be tempted to categorize an externally powered propeller as a drag reduction
device, even though the total flux is increased for a given pressure gradient, or the
required pressure gradient for a given flux is decreased: this propeller is a pumping
device.

In a pipe or a channel, pumping is an action that induces a flux in the absence of any
other injected power. Applying a pressure gradient is pumping, inserting a powered
propeller is pumping, applying travelling waves of wall deformation or blowing and
suction is pumping. Now, for a given pumping, drag reduction is an action such that
the total power to drive the same flux is reduced, or equivalently, the flux obtained by
a given total power is increased. For vehicles, pumping becomes thrust and induces
a motion in absence of any other source of energy, whereas drag reduction results in
less power for the same speed or a larger speed for the same power.

It is shown in Fukagata et al. (2009) that the parabolic flow profile in the channel is
that leading to the least viscous damping. Any actuation that disturbs the flow from
this profile shall increase the required power; namely, drag reduction is impossible
when the base flow is the Poiseuille flow. The pumping efficiency – defined as the
ratio of the energy dissipated by the Poiseuille profile over the total injected energy –
must be lower than or equal to one. It is on the other hand possible to achieve
drag reduction from the turbulent regime, since the flow is then not a solution of
the Stokes equations. The example of turbulent drag reduction of Min et al. (2006)
might be understood as a secondary effect of pumping, as discussed in § 3. Based on
this discussion, we advocate the representation of flow control results in the form of
the ‘power plane’ of figure 8. This graphical representation emphasizes the total input
power as a central feature of the performance.

Appendix. Weakly nonlinear analysis
We can gain yet an alternative point of view on the mechanisms if we assume

small amplitude actuation. We will see that the first-order solution does not lead to
flux, and obtain a diffusive equation for the second-order solution, whose average in
x does not vanish. This setting will also be useful to study how the presence of a
Poiseuille base flow can lead to specific phenomena.

A.1. Boundary conditions

We consider the case of small amplitude wall deformation/blowing and suction, where
we can decompose the response with respect to the different orders of its magnitude.
This analysis can be done in the weakly nonlinear framework. We will see that the
leading-order solution will induce an oscillatory motion, particles following circular
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trajectories about a fixed point, and that a mean drift will be induced at second order,
responsible for the pumping, in the forward direction for wall displacement, and in
the backward direction for blowing and suction. This framework will also be useful to
investigate the effect of an imposed pressure gradient, a case where a mean Poiseuille
flow profile is present. The Reynolds number is now defined as Rec = ρUch/μ, based
on the channel half height h, channel centreline velocity Uc, fluid density ρ and
viscosity μ.

We perform an amplitude expansion of flow quantities

u = U + εu′ + ε2u′′/2 + O(ε3), (A 1)

where ε is a small amplitude parameter. By introducing these amplitude expansions
for u, v and p in the Navier–Stokes equation, we find that U is the parabolic
profile induced by the external pressure gradient, and u′, v′, p′ obey the Navier–
Stokes equation linearized about U . The pumping effect appears from the streamwise
average of the second-order amplitude solution u′′, which obey the equation

1

Rec

u′′
yy = v′u′

y, (A 2)

where the subscript y denotes derivative in the vertical direction, and the overline
denotes equivalently average in time over one period, or average in space over one
wavelength.

Denoting by η the actuation waveform, the boundary conditions of the
blowing/suction case are u = 0, v = εη, of amplitude ε. Therefore, all boundary
conditions are zero, except v′ = η. For peristalsis, the no-slip condition at the displaced
walls can be expanded to y = ±1, since the wall displacement εη is small

u|1+εη
= 0 = u|1 + εη uy |1 +

(εη)2

2
uyy |1 + O(ε3).

We can now inject our amplitude expansion (A 1) in this expression, here for u at the
top wall

u|1+η = 0 =
[
U + εu′ + ε2

2
u′′]

|1

+εη
[
Uy + εu′

y + ε2

2
u′′

y

]
|1

+ (εη)2

2

[
Uyy + εu′

yy + ε2

2
u′′

yy

]
|1

+ O(ε3).

We see from this expression that the double expansion (in amplitude and in space
about y = ±1) induces interactions between the solutions of different orders at the
walls. We now gather like orders of ε. We obtain zero boundary conditions on U ;
for the first-order amplitude solution, we have u′ + ηUy = 0, v′ = ηt , thus there is a
non-zero boundary condition on the streamwise velocity – depending on the base
shear – and v′ equals the time derivative of the waveform. At second order, u′′ = ηu′

y:
a non-zero boundary condition (slip velocity) resulting from the quadratic interaction
of the leading-order solution and the wall displacement.

If the external pressure gradient is set to zero, we have U = Uy = 0 and the boundary
conditions become

Peristalsis: u′|±1 = 0, v′|±1 = ηt , u′′|±1 = ηu′
y |y=±1,

Blowing/suction: u′|±1 = 0, v′|±1 = η, u′′|±1 = 0.
(A 3)

This set of boundary conditions, together with (A 2), is most representative of the
differences and similarities between the two types of actuation. The first-order solution
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(u′, v′) obeys in both cases the dynamics of a wave of blowing and suction. Through
(A 2), this first-order solution induces a forced creeping flow: a pumping proportional
to the Reynolds number. We found through our computation that this effect was
always favourable to backward pumping: both for peristalsis and blowing/suction.
For peristalsis only, the quadratic interaction of the first-order solution and the wall
displacement ηu′

y result in a slip velocity for the second-order solution, which we
found to be always favourable to forward pumping, and its effect always dominate
the backward pumping due to the Reynolds stress term.

We now consider a sinusoidal waveform

η = cos[α(x − ct)] = [eiα(x−ct) + e−iα(x−ct)]/2,

with α the wavenumber and i =
√

−1. With this parametrization, the wavelength
is L =2π/α. The zeroth-order solution U is a Poiseuille profile, constant in x. The
first-order solution satisfies the Navier–Stokes equations linearized about U , with
boundary conditions based on η. The first-order solution is thus only composed of
the fundamental frequency: it has the same periodicity as η and can thus be written
as

u′(x, y, t) = [û(y)eiα(x−ct) + û(y)∗e−iα(x−ct)]/2,

v′(x, y, t) = [v̂(y)eiα(x−ct) + v̂(y)∗e−iα(x−ct)]/2;

here, û and v̂ are complex functions of y, whose complex arguments represent the
y-dependent horizontal phase shift with respect to the waveform imposed at the wall.
Here, ∗ denotes the complex-conjugate. We can now express the averaging v′u′

y of
(A 2) in terms of the complex amplitude functions

v′u′
y =

1

L

∫ L

0

(v̂ûye
2iα(x−ct) + v̂∗û∗

ye
−2iα(x−ct) + v̂û∗

y + v̂∗ûy)/4 dx = real(v̂û∗
y)/2.

This result implies that the pumping effect originating from the Reynolds stress term
in (A 2) vanishes whenever v and uy are in phase quadrature (v̂û∗

y is purely imaginary).
Conversely, any departure from phase quadrature induces pumping.

The second pumping effect, which is present only for peristalsis comes from the
slip boundary condition on u′′, at y = 1 for instance

ηu′
y = real(ûy)/2;

this pumping effect disappear whenever if u′
y is in phase quadrature with η (i.e. ûy is

purely imaginary); conversely, departure from quadrature induces pumping.

A.2. Base flow effect: critical layers

We are now interested in the pumping effect if in addition to the wall actuation,
there is an external pressure gradient inducing a Poiseuille flow. The weakly nonlinear
framework is ideal to investigate the interaction between the base flow profile and
the actuation. In Min et al. (2006), a large drag increase is observed if the wall wave
is made to travel downstream. We will see that this effect is due to the presence of
critical layers.

When a wave of constant amplitude propagates on a shear, locations of the base
flow at which the velocity equals the wave speed play a special role. These are critical
layers. In the inviscid limit, a critical layer corresponds to a singular point of the
linear dynamic equations. When viscosity is present, this singularity is smoothed, but
its effect is still felt, increasingly for large Reynolds numbers (see Maslowe 1986).
Here, we have two critical layers whenever c ∈ [0, 1], at y = ±

√
1 − c. They are just
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Figure 10. Wall actuation interaction with base flow: pumping flux as a function of the
wave speed c for Rec = 1, 10, 100, 1000. The parameter range where a critical layer is present
c ∈ [0, 1] is highlighted by a shaded strip.

at the walls for c = 0 and merge in the centre at c = 1. In the low-amplitude limit,
the streamfunction is known to go through a phase change of π across the critical
layer. This effect is visible in figure 9, where c was chosen such as to have critical
layers at y = ±0.3, ±0.6, ±0.9. It is interesting to note that for both peristalsis and
blowing/suction, the critical layer effect (c ∈ [0, 1]) always opposes the Poiseuille flow,
thus acting such as to reduce the flux for a given pressure gradient.

Another location where ûy and v̂ depart from quadrature is close to the walls
in two thin viscous layers. In the absence of critical layers, the pumping effect for
the blowing and suction case is entirely induced by this near-wall viscous effect: a
phase lag of ûy due to the no-slip boundary condition. The impact of the presence
of the critical layer can be seen in figure 10, where the obtained flux is shown while
varying the speed c of the travelling wave actuation. This critical layer effect is clearly
opposed to the base flow flux (negative Q′′).

We note that Mittra & Prasad (1974) have analysed the interaction of peristalsis
with Poiseuille flow, but have considered low Reynolds number relevant for biological
applications where the effect of critical layers is small.
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